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A polymer chain tethered to a surface may be compact or extended, adsorbed or desorbed,
depending on interactions with the surface and the surrounding solvent. This leads to a rich phase
diagram with a variety of transitions. To investigate these transitions we have performed Monte
Carlo simulations of a bond fluctuation model with Wang–Landau and umbrella sampling
algorithms in a two-dimensional state space. The simulations’ density-of-states results have been
evaluated for interaction parameters spanning the range from good- to poor-solvent conditions and
from repulsive to strongly attractive surfaces. In this work, we describe the simulation method and
present results for the overall phase behavior and for some of the transitions. For adsorption in good
solvent, we compare with Metropolis Monte Carlo data for the same model and find good agreement
between the results. For the collapse transition, which occurs when the solvent quality changes from
good to poor, we consider two situations corresponding to three-dimensional �hard surface� and
two-dimensional �very attractive surface� chain conformations, respectively. For the hard surface,
we compare tethered chains with free chains and find very similar behavior for both types of chains.
For the very attractive surface, we find the two-dimensional chain collapse to be a two-step
transition with the same sequence of transitions that is observed for three-dimensional chains: a
coil-globule transition that changes the overall chain size is followed by a local rearrangement of
chain segments. © 2008 American Institute of Physics. �DOI: 10.1063/1.2837459�

I. INTRODUCTION

Chain molecules anchored at surfaces are a part of many
physical systems. Examples include polymer chains grafted
to colloidal particles,1 proteins projecting from cell
membranes,2 block copolymers at liquid air interfaces,3,4 and
long chain molecules attached to inorganic surfaces for study
with atomic force microscopes.5 Parameters such as compo-
sition of the chains, grafting density, and interactions with
the surface and the environment affect the properties of these
systems by determining the conformations of the chains. In
this work we focus on the effects of solvent quality and
surface interactions and investigate individual polymer
chains tethered to a flat, impenetrable surface. A tethered
chain near an attractive surface has many of the conforma-
tion characteristics of a free chain adsorbed from solution.
Likewise, a tethered chain near a hard surface has much in
common with an isolated free chain. These similarities allow
us to compare with known results for free chains to validate
our approach. They also suggest that our new results are
relevant to the process of surface adsorption from dilute
polymer solutions.

As is well known, the collapse transition that a flexible
polymer chain undergoes in dilute solution when the solvent
quality deteriorates is one of the fundamental problems in the
statistical mechanics of polymers. It is of crucial importance
in understanding the phase diagrams of polymer solutions

and still offers surprising insights.6 Of similar importance is
the adsorption transition in good solvent, where the confor-
mations of a tethered chain change from “mushroom” to
“pancake” configurations as the strength of the surface-
monomer attraction increases. This problem has attracted
longstanding intense attention as a basic phenomenon of
polymer chains interacting with interfaces.7 Of course, both
“transitions” are sharp thermodynamic phase transitions only
in the �thermodynamic� limit when the chain length tends to
infinity, but understanding how this limit is precisely ap-
proached is one of the challenges here.

In the present work, we go one step beyond the problems
outlined above, by considering the interplay of adsorption
and collapse. This problem is essential for understanding
polymeric aggregates on surfaces when no solvent is present
�e.g., adsorbed polymers on a surface exposed to air!�. It is
also a first step towards the treatment of heteropolymers at
surfaces, a system suited to give insight into the behavior of
biopolymers at biological interfaces, membranes, etc., since
these polymers of biological interest often assume rather
dense conformations. However, even the case of a ho-
mopolymer at a surface undergoing adsorption competing
with collapse is a very difficult problem, and despite earlier
numerical studies8–17 not yet fully understood. In particular,
the question how the polymer model may affect the observed
phenomena merits further investigation. In most of the exist-
ing work, the polymer has been modeled as an interacting
self-avoiding walk on a simple cubic lattice �ISAW�. In thea�Electronic mail: jutta@physics.uakron.edu.
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ISAW model, the bond length is fixed to the size of the
lattice constant and the bond angles are restricted to the val-
ues of � /2 and �. This leads to very specific chain confor-
mations in poor-solvent conditions, where a chain near an
attractive surface fills the volume of a rectangular box.13,14,17

In contrast, an off-lattice model of a polymer chain under
such conditions has chain conformations whose shapes re-
semble the spherical caps that are typical for partially wet-
ting liquid drops.18 In this work, we employ the bond fluc-
tuation �BF� model to investigate tethered chains. In the BF
model, there are five allowed bond lengths leading to a large
set of allowed bond angles.19–21 In terms of chain conforma-
tions, the BF model may be considered an intermediate be-
tween the ISAW lattice model and coarse-grained off-lattice
models such as bead-spring models. In crystallizable ho-
mopolymers such as polyethylene and poly�ethylene oxide�
the local structure of the chains leads to an alignment of
chain sections and lamella formation upon crystallization.22

The necessity for mesoscopic conformational ordering ac-
companying this alignment gives rise to a large entropic bar-
rier to crystallization and makes kinetic effects a dominant
factor in polymer crystallization. Therefore it is difficult to
separate thermodynamic effects from nonequilibrium effects.
In coarse-grained models of polymers, such as the BF model
and typical bead-spring models, one can choose force fields
with sufficient local flexibility to allow for crystallization by
local rearrangement of monomers. This reduces the entropic
barrier to crystallization and allows the systems to reach or-
dered equilibrium states. While their lack of lamella forma-
tion hampers the comparison with experimental data for
simple crystallizable homopolymers, the lower entropic bar-
riers of coarse-grained models allow us to study equilibrium
aspects of polymer crystallization. The BF model has proven
to be a very useful model for a range of polymeric systems
�see, for example, Refs. 19–21 and 23–25� but has not yet
been investigated in the present context.

The combined effects of surface interactions and solvent
quality lead to a variety of transitions for a polymer chain
tethered to a surface. In Fig. 1 we present a schematic phase
diagram that represents insights from theoretical and simula-
tion work on lattice models of tethered polymer chains8–14

including results presented in this work. The field variables
�s and �b are a combination of inverse temperature and in-
teraction parameters8,14 and will be defined in Sec. III. The
field �s describes the effect of surface interactions and in-
creases with increasing attraction between the surface and
the chain segments. The field �b describes the net interac-
tions between monomers of a polymer chain in solvent. �b is
small for a chain in a good solvent and increases with de-
creasing solvent quality, corresponding to increasing net at-
tractive interactions between monomers.

The regions marked DE �desorbed extended� and AE
�adsorbed extended� correspond to good-solvent conditions.
With field values in the DE region, a tethered chain assumes
extended three-dimensional conformations that are often de-
scribed as mushrooms. An increase of the surface field �s

leads to chain adsorption. For fields in the AE region, the
chain conformations are �nearly� two dimensional and ex-
tended; they are sometimes called pancake conformations.

The transition from DE to AE states has been investigated
with theoretical and simulation methods for a variety of
models �see, for example, Refs. 18 and 26–29�. In the limit
of infinite chain length, the adsorption transition is sharp and
corresponds to a multicritical point.

The regions marked DC �desorbed compact�, AC �ad-
sorbed compact�, and LS �layered states� correspond to poor-
solvent conditions. Subject to fields in the DC region, a chain
assumes compact three-dimensional globule conformations
and for fields in the AC region the corresponding two-
dimensional conformations. The region labeled LS is charac-
terized by a competition between the effects of attractive
surface and monomer interactions.

For weak surface fields �s, an increase in the field �b

leads to chain collapse, i.e., the coil-globule transition from
DE to DC states. For free chains, the coil-globule transition
is a continuous transition which may be followed by a first-
order transition that is associated with spatial ordering of the
chain segments �see, for example, Refs. 30–32�. From theo-
retical work on the ISAW model, the line describing the coil-
globule transition is expected to be a straight line parallel to
the �s axis8 and perpendicular to the adsorption transition
line. For strongly attractive surfaces, i.e., for large �s values,
an increase in �b leads to a transition from AE to AC states.
In analogy with the coil-globule transition of a free chain in
two dimensions, this transition is expected to be continuous
for ISAW models.9

Adsorption in poor solvent occurs for high �b values as
the surface field �s is increased. It takes a tethered chain
from desorbed globule conformations in three dimensions
�DC� to compact, single-layer conformations �AC� through

FIG. 1. Schematic phase diagram for tethered chains of finite length in the
space of field variables �b and �s �see Sec. III for the formal definition�. As
discussed in the text, increasing values of �s and �b correspond to increas-
ingly attractive surface- and monomer-monomer interactions, respectively.
The lines indicate transitions between states identified by the following ab-
breviations: DE for desorbed extended �mushroom�, AE for adsorbed ex-
tended �pancake�, DC for desorbed compact, AC for adsorbed compact, and
LS for layered states. The solid lines indicate transitions that are expected to
become true phase transitions in the limit of infinite chain length. The
dashed lines represent structural transitions observed for finite size chains
only. The ending of the dashed lines indicates that, in simulations, these
structural transitions can no longer be uniquely identified in regions of field
parameters, where several transitions compete with each other.

064903-2 Luettmer-Strathmann et al. J. Chem. Phys. 128, 064903 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



intermediate states �LS� that are not yet fully understood and
appear to be model dependent. Singh and co-workers 11–13

investigated untethered chains by exact enumerations of in-
teracting self-avoiding walks on a simple cubic lattice
�ISAW model�. In poor-solvent conditions, a free chain as-
sumes its most compact conformation which, in the ISAW
model, has the shape of a cube with side length l�N1/3,
where N is the length of the chain. In the presence of a
�slightly� attractive surface, the cubic globule attaches itself
to the surface and makes a number of surface contacts pro-
portional to the area of a face of the cube, i.e., �N2/3. Singh
and co-workers11–13 interpret the transition from the detached
to the attached globule as a surface transition from the DC
phase to a “surface-attached globule” phase, which occupies
the LS region in Fig. 1, and is followed by a second phase
transition at high �s values to the AC phase. For tethered
chains in the ISAW model, theoretical arguments suggest
that there is only one true phase transition �nonanalyticity of
the free energy in the limit of infinite chain length� as �s is
varied at constant �b.8 More recent simulations of tethered
chains in the ISAW model by Krawczyk et al.14 found the
chains to undergo a series of layering transformations in the
LS region corresponding to transitions between compact
chain conformations with different numbers of layers parallel
to the surface. This work identified scaling relations which
suggest that, with increasing chain length, the transitions be-
come sharper and more numerous, and that the transitions
merge into a single transition in the limit of infinite chain
length. In the diagram of Fig. 1, we represent the true phase
transition by a solid line between the AC and LS regions.
The dashed lines in Fig. 1 indicate structural/layering transi-
tions that may not become phase transitions in the infinite
chain limit. These transitions are important, however, since
for many problems the behavior of finite-length chains is of
physical interest.

In this work, we investigate transitions of tethered poly-
mer chains with the aid of density-of-states simulations of a
bond fluctuation model. In the work presented here we focus
on characteristic features of adsorption in good solvent �DE
to AE� and chain collapse in two and three dimensions �DE
to DC and AE to AC�. We also construct a phase portrait for
our longest chain. In a forthcoming publication we shall dis-
cuss adsorption in poor solvent and investigate some states
and transitions in detail. In this article, we introduce the bond
fluctuation model for a tethered chain and describe the simu-
lation methods in Sec. II and the data evaluation in Sec. III.
Results of our simulations are presented and discussed in
Sec. IV, followed by a brief summary and conclusions in
Sec. V. Technical details of the simulations undertaken for
this work are presented in the Appendix.

II. MODEL AND SIMULATION METHOD

In this section, we present the model for a surface-
attached polymer chain and the simulation methods em-
ployed in this work. Details of the simulation protocol that
are of interest to those who want to reproduce or extend the
work but that are not required for an understanding of the
following sections have been relegated to the Appendix.

In the BF model,19–21 monomers of a polymer chain oc-
cupy sites on a simple cubic lattice. The bond lengths be-
tween monomers are allowed to vary between b=2a and b
=�10a, where a is the lattice constant, which we set to unity,
a=1. A tethered chain is represented by a chain whose first
monomer is fixed just above a hard surface. The position of
the surface is the x-y plane at position z=0 in a Cartesian
coordinate system; the coordinates of the fixed monomer are
�1,1,1�. Monomers at z=1 are considered to be in contact
with the surface and contribute an amount �s to the energy.
The interactions between monomers depend on the distance.
A pair of monomers i and j at a distance rij contributes an
amount of �b to the energy when 4�rij

2 �6. Distances rij
2

�4 are prohibited by hard core repulsion, while monomers
do not interact for rij

2 �6. The total energy of the system is
given by

E�ns,nb� = ns�s + nb�b, �1�

where ns and nb are the number of monomer-surface and
monomer-monomer contacts, respectively. We refer to a pair
of contact numbers, �ns ,nb�, as a state of the system.

In the Monte Carlo simulations described here, two
types of elementary moves were carried out; local moves that
displace a monomer to a nearest neighbor lattice site and
pivot moves about the z-axis. Simulations were performed
for chains of length N=16, N=32, and N=64. In all simula-
tions, N local move attempts were followed by ten pivot
move attempts. We refer to this sequence as one Monte Carlo
�MC� step.

A. Wang–Landau algorithm for a two-dimensional
state space

The density of states �DOS�, g�ns ,nb� is the number of
configurations for a given state �ns ,nb� of the system. The
Wang–Landau �WL� algorithm33,34 is an iterative Monte
Carlo simulation method for constructing the density of
states. Originally formulated for a one-dimensional state
space, characterized by the total energy, it has been extended
to state spaces of higher dimensions.35–37 In this work, the
state space is the two-dimensional space of contact numbers
ns and nb.

In the WL algorithm, an elementary move attempt from
a state �ns ,nb� to a state �ns� ,nb�� is accepted with probability

p��ns,nb� → �ns�,nb��� = min� g�ns,nb�
g�ns�,nb��

,1� , �2�

where g�ns ,nb� is the current estimate for the density of
states.

The initial guess for the density of states is g�ns ,nb�=1
for all states �ns ,nb�. At each iteration level, elementary
move attempts are followed by an update of the density of
states and the histogram of visits to the states, h�ns ,nb�. After
an attempted move from a state �ns ,nb� to a state �ns� ,nb�� the
updates are given by

if accepted: �ln�g�ns�,nb��� → ln�g�ns�,nb��� + ln�f�
h�ns�,nb�� → h�ns�,nb�� + 1,

	
�3�
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if rejected: �ln�g�ns,nb�� → ln�g�ns,nb�� + ln�f�
h�ns,nb� → h�ns,nb� + 1,

	
�4�

where f , with f �1, is the refinement factor. An iteration is
considered complete when the histogram satisfies a flatness
criterion. In a typical Wang–Landau simulation,33,34 a histo-
gram is considered flat when the smallest value in the histo-
gram is at least 80% of the average value of the histogram
entries. At that point, the histogram is reset to 0 for all states
and the refinement factor is reduced before the next iteration
is started. The adjustments to the density of states become
smaller with each iteration level; we used refinement levels
with ln�fk�=2−�k−1� for k� 
2,20�.

For tethered chains, the range of accessible states �ns ,nb�
is not known a priori. Since the maximum number of surface
contacts ns is equal to the number of monomers N, the maxi-
mum value of the ratio ns /N is unity for all chain lengths.
However, the maximum value of nb /N, the number of
monomer-monomer contacts per monomer, increases with
chain length as illustrated in Fig. 2. In addition, for each
chain length, the maximum number of monomer-monomer
contacts decreases with increasing number of surface con-
tacts. In the work presented here, we allow the range of
considered states to change during the simulations. During
the Wang–Landau simulations, when a configuration to a
previously unvisited state �nb� ,ns�� appears, the new state is
assigned the initial DOS value g�ns� ,nb��=1 and the move is
accepted or rejected with the usual criterion.

For simulations of free chains in the bond fluctuation
model, it was found that updating after accepted moves only
may lead to shorter simulation times without affecting the
results for the density of states.38 In the work presented here,

we carried out simulations where either both updates, Eqs.
�3� and �4�, or only the updates after accepted moves, Eq.
�3�, were carried out.

B. Multiple replica algorithm

In a multiple replica simulation, the state space is di-
vided into a number of overlapping regions. Standard simu-
lation steps are carried out separately in each replica. After
each MC step, an attempt is made to exchange the chains of
two neighboring replicas if their configurations belong to
states in the overlap region of the replicas. The acceptance
criterion for such a replica-swapping move is

p���ns,nb�i,�ns�,nb��i+1� → ��ns�,nb��i,�ns,nb�i+1��

= min�g�ns,nb�i+1

g�ns�,nb��i

g�ns�,nb��i+1

g�ns,nb�i
,1� , �5�

where i and i+1 are the indices for neighboring replicas.
When using the method to generate the density of states, the
DOS values are updated after each attempted move in the
usual way, see Eqs. �3� and �4�. The density of states for the
whole state space is obtained at the end of the simulation by
combining the results for each replica. For the results pre-
sented here, we used regions that were defined by intervals in
the number of bead-bead contacts nb and contained all pos-
sible surface contacts. We experimented with regions of dif-
ferent sizes and different ranges of overlap and found that
small but systematic errors in the density of states occurred
unless each state was covered by the same number of repli-
cas. We worked with a total of three to five overlapping
replicas covering each region with two replicas.

C. Global update algorithm

When the WL algorithm is applied to large two-
dimensional state spaces much time is spent accumulating
the large ln�g� values belonging to the interior of the state
space. Introducing global updates35 improves the efficiency
by allowing the simulation to spend more time exploring the
edges of the current state space. In a global update algorithm,
a simulation is started at a given refinement level and the
current values of ln�g�ns ,nb�� are compared with a threshold
value �. Once density-of-states values above the threshold,
ln�g�ns ,nb����, are found, they are augmented in the fol-
lowing way:

ln�g� → ln�g� + 	 exp� − 


ln�g� − �
���ln�g� − �� , �6�

where � is the Heaviside step function. The exponential
function dampens the shift from a maximum value of 	 for
states with ln�g� values well above the threshold to zero for
states at the threshold; the parameter 
 determines the range
over which the shift is phased out. The simulation then con-
tinues with standard steps and local updates to the density of
states. Immediately after a global shift, states that were out-
side the shifted region are preferentially sampled. With time,
their ln�g� values increase thereby decreasing the acceptance
rates for moves to those states and leading to uniform sam-
pling over previously shifted and unshifted states. Once uni-

FIG. 2. Ranges of accessible states for tethered chains of lengths N=7, 16,
32, and 64. The shaded areas approximate the ranges, and the symbols
represent the realized states with the highest number of bead contacts nb for
a given number of surface contacts ns. The results for N=7 were obtained in
exact enumeration.
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form growth over the current state space has resumed the
next global update is considered. This continues until a flat-
ness criterion is satisfied or the simulation is terminated by
hand.

To determine when uniform growth has been achieved in
our simulations, we monitor the difference � ln�g� between
the current value of the log-density of states and that at the
time of the global shift. When for each previously shifted
state the difference � ln�g� is larger than a fixed parameter 
,
we conclude that uniform growth has been achieved. We
found that the values for the parameters 	, 
, �, and 
 can
have a large effect on the quality of the results. In particular,
systematic deviations in the results for the density of states
occur when the global updates are too large and occur too
frequently.

D. Umbrella sampling

In multicanonical or umbrella sampling simulations with
single histogram reweighing, a good estimate for the density
of states g�ns ,nb� is required as input �see, for example, Refs.
21 and 39–41�. We performed umbrella sampling simula-
tions with a WL result as the initial DOS for all simulation
results reported here. During the simulation, elementary
moves are accepted with the usual criterion, see Eq. �2�, and
the histogram is updated after accepted and rejected moves.
The DOS values, however, are updated only at the end of the
simulations. In a typical single histogram reweighing step,
the logarithm of the final histogram entry h�ns ,nb , tf� is
added to the original log-density of states values,

ln�g��ns,nb�� = ln�g�ns,nb�� + ln�h�ns,nb,tf�� . �7�

In the work presented here, we record cumulative histograms
at regular intervals, determine the slope m�ns ,nb� of the his-
togram entries as a function of time, and estimate the final
histogram entry from the slope h�ns ,nb , tf��m�ns ,nb�tf. This
gives a slightly more reliable DOS estimate for states that are
not visited in every block.

E. Metropolis algorithm

For comparison with results from the density-of-states
algorithms and in order to sample efficiently some parts of
phase space during the production stage, some simulations
were performed with a Metropolis acceptance criterion at
fixed fields �s and �b. The probability for accepting a move
from a state �ns ,nb� to a state �ns� ,nb�� in the Metropolis al-
gorithm may be written as

p��ns,nb� → �ns�,nb���

= min�exp��s�ns� − ns� + �b�nb� − nb��,1� . �8�

F. Production stage

In a production simulation, chain conformations are
evaluated at regular intervals to accumulate configurational
properties as a function of the pairs of contact numbers
�ns ,nb�. We determined a range of configurational properties
including chain dimensions and density profiles. Further-
more, configurations were stored for a detailed analysis of

the chain structure. In this work, we present results for the
squared bond length B2=
i�ri+1−ri�2 / �N−1�, where ri is the
position vector of monomer i, and for the radius of gyration
Rg. In order to investigate the effect of the surface, we cal-
culate parallel and perpendicular contributions to Rg

2 accord-
ing to

Rg,z
2 =

1

N2

i�j

�zi − zj�2, �9�

Rg,xy
2 =

1

N2

i�j

��xi − xj�2 + �yi − yj�2� , �10�

where i , j� 
1, . . . ,N� and where xi ,yi ,zi are the Cartesian
coordinates of monomer i, and Rg

2=Rg,z
2 +Rg,xy

2 .
When production simulations are performed with the ac-

ceptance criterion of the Wang–Landau algorithm all states
�ns ,nb� are visited approximately equal numbers of times.
This may lead to insufficient sampling of states �ns ,nb� with
a diverse set of chain conformations. In order to improve the
statistics for the configurational properties belonging to such
states �ns ,nb�, we performed additional production simula-
tions with a Metropolis Monte Carlo algorithm for fields
between �s=�b=0 and �s=�b=−2. In these simulations, the
visitation histograms are approximately Gaussian with
maxima at the most probable states for these fields.

For all chain lengths, we performed more than one type
of production simulation. During production, block
averages21,42 were calculated and the statistical uncertainty of
an average value was determined from the standard deviation
of the block averages. Results from different production
simulations were combined as weighted averages, where the
weights were based on the uncertainty estimates obtained for
each quantity in the individual production simulations.

III. EVALUATION OF THE DENSITY OF STATES

The canonical partition function for a tethered chain is
given by

Z = 

ns,nb

g�ns,nb�e−�E�ns,nb�, �11�

where �=1 /kBT, T is the temperature, kB is Boltzmann’s
constant, and g�ns ,nb� is the density of states. The energy of
the state, E�ns ,nb�=ns�s+nb�b, depends on the contact num-
bers ns and nb and the interaction parameters �s and �b. In
this work, we employ combinations of the interaction param-
eters and the inverse temperature as field variables8,14

�s = − �s�, �b = − �b� , �12�

and write the partition function as

Z��s,�b� = 

ns,nb

g�ns,nb�e�snse�bnb. �13�

For fixed fields �s and �b, the probability P�ns ,nb ;�s ,�b� for
states with contact numbers �ns ,nb� is given by
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P�ns,nb;�s,�b� =
1

Z
g�ns,nb�e�snse�bnb, �14�

and the average values of quantities Q�ns ,nb� at given fields
�s and �b are calculated from

�Q� = 

ns,nb

Q�ns,nb�P�ns,nb;�s,�b� � Q��s,�b� . �15�

At the end of this section, we describe how we estimate
uncertainties for the averages determined in this way.

With the definition of a free energy

G��s,�b� = − ln�Z� , �16�

the average number of surface contacts �ns� and the average
number of monomer contacts �nb� are conjugate to the field
variables �s and �b, respectively,

�ns� = − � �G

��s
�

�b

, �17�

�nb� = − � �G

��b
�

�s

. �18�

The second derivatives of the free energy with respect to the
fields define susceptibilities ���, � ,�� 
s ,b� that are related
to the fluctuations in the number of surface and monomer
contacts

�ss = − � �2G

��s
2 �

�b

= �ns
2� − �ns�2, �19�

�bb = − � �2G

��b
2 �

�s

= �nb
2� − �nb�2, �20�

�sb = − � �2G

��s�b
� = �nsnb� − �ns��nb� . �21�

In terms of these susceptibilities, the heat capacity of the
system is given by

C = �2��E2� − �E�2� = �s
2�ss + �b

2�bb + 2�s�b�sb. �22�

There are alternative methods to evaluate the density of
states which we would like to discuss briefly. The density of
states g�ns ,nb� provides the entropy as a function of the con-
tact values up to an arbitrary constant S0 as follows:

S�ns,nb� = kB ln�g�ns,nb�� + S0. �23�

Starting from the entropy as the thermodynamic potential,
the fields and susceptibilities may be expressed in terms of
derivatives of the log-density of states. For example, the
fields may be obtained as �s�ns ,nb�=−�� ln�g� /�ns�nb

and
�b�ns ,nb�=−�� ln�g� /�nb�ns

. In the thermodynamic limit, N
→�, results from different statistical ensembles are equiva-
lent; however, for our chain lengths finite size effects may
play a role. Since an evaluation of the entropy is hampered
by the need to take numerical derivatives of discrete vari-
ables, we employ the free energy G��s ,�b� unless otherwise
indicated.

In some cases, it is convenient to work with a thermo-
dynamic potential that is a function of the number of surface
contacts ns and the bead-contact field �b. This free energy
A�ns ,�b� may be considered a Legendre transform43 of either
the entropy S or the free energy G and may be written as
A�ns ,�b�=−ln�ZA�, with

ZA�ns,�b� = 

nb

g�ns,nb�e�bnb. �24�

In this case, the probability for a state with nb bead contacts
is given by

P�nb;ns,�b� =
1

ZA
g�ns,nb�e�bnb, �25�

which allows us to calculate quantities for given ns and �b

without taking numerical derivatives. For example, the aver-
age number of bead contacts is determined from

�nb�ns,�b�� = 

nb

nbP�nb;ns,�b� . �26�

In general, there are two sources of error when average
quantities �Q�=Q��s ,�b� for given field values �s and �b are
obtained from the contact number dependent values Q�ns ,nb�
with the aid of Eq. �15�. The first source of error is the
uncertainty in the density of states; this is the only uncer-
tainty for quantities such as the susceptibilities, see Eqs.
�19�–�21�. To estimate this uncertainty, we perform several
simulations for the same chain length and calculate the mean
value ln�g�ns ,nb�� and the standard deviation �ln�g��ns ,nb� for
each state �ns ,nb�. The second source of error is the uncer-
tainty in production results, which we obtain from block av-
erages. For properties such as the chain dimensions, see Eqs.
�9� and �10�, this is typically the larger source of error.

In order to estimate the effect of the uncertainties in the
density of states on calculated properties Q, we generate five
synthetic densities of states ln�gi� by drawing randomly from
Gaussian distributions centered on ln�g�ns ,nb�� with standard
deviation �ln�g��ns ,nb� for each state �ns ,nb�. Average values
�Q�i are calculated from each synthetic density of states i and

the mean Q̄ and standard deviations �Q,g of the results are
determined. The uncertainties of production data are propa-
gated through Eq. �15�, evaluated with ln�g�, to obtain the
second contribution to the uncertainty �Q,p. The combined
uncertainty is estimated from �Q=��Q,g

2 +�Q,p
2 .

The uncertainty estimates, �Q,g for results that derive
their errors only from the density of states and �Q for results
that involve production data, are shown as error bars in the
figures of this work. Error bars are omitted when they are
smaller than the symbol size or the line thickness.

IV. RESULTS AND DISCUSSION

A. Density of states

Density-of-states results were obtained for chains of
length N=16, N=32, and N=64 with the simulations de-
scribed in Sec. II. Figure 2 shows the ranges of accessible
states for these chains and also includes results from an exact
enumeration for chains of length N=7. In each case, the
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maximum number of bead-bead contacts decreases with in-
creasing number of surface contacts since chain conforma-
tions cannot maximize surface and bead contacts simulta-
neously. This leads to a competition between bead and
surface contacts at high field values which increases with
increasing chain length.

In Fig. 3 we present results for the log-density of states
for chains of length N=32 and N=64 �the results for N=16
show the same qualitative behavior�; some characteristic nu-
merical values are presented in Table I. For each surface-
contact value, ns, and for small contact values nb, the density
of states increases with nb. As nb increases further, ln�g�
passes through a maximum and then decreases with increas-
ing nb. As discussed at the end of Sec. III, the slope of
ln�g�ns ,nb�� at fixed ns is related to the expectation value of
the field �b�ns ,nb�. This suggests that states with small bead-
contact values are predominantly populated for negative �b

fields �repulsive interactions between the beads� while states
with large bead-contact values are populated for positive �b

fields �attractive bead-bead interactions�. This is confirmed
by an evaluation of the average bead-contact number accord-
ing to Eq. �26�. In Fig. 4 we present results for the average
number of bead contacts �nb�ns ,�b�� as function of the num-
ber of surface contacts for five fields �b. For each ns and �b

we also evaluated cumulative probabilities 

nb=0
n*b P�ns ,�b ;nb�

and determined the bead-contact numbers n*b,1 and n*b,2

where the cumulative probability first exceeds 1 /6 and 5 /6,

respectively. The states between n*b,1 and n*b,2 have signifi-
cant probability of occupation and are indicated by the
shaded areas in Fig. 4. As expected, the range of significantly
populated states shifts from low-nb to high-nb values with
increasing field �b. For the largest field shown, �b=2, states
on the upper rim of the range of accessible states start to
become populated. Since the density-of-states values for rim
states have a relatively large uncertainty, we restrict our-
selves in this work to fields �b�2. The width of the shaded
areas in Fig. 4 is an indication for the size of the fluctuations
about the mean value. These fluctuations are larger for �b

FIG. 3. Density of states for tethered chains of length N=32 �top� and N
=64 �bottom�. The surfaces �small symbols connected by straight line seg-
ments� represent the log-density of states values, ln�g�, as a function of
surface contacts, ns, and bead-bead contacts, nb.

TABLE I. Umbrella sampling parameters and some density-of-states char-
acteristics for chains of length N=16, N=32, and N=64. Nu is the number of
results for which umbrella sampling simulations were performed, Ku is the
length of the simulations in Monte Carlo steps, Ns is the number of states
sampled, and nb,max�1� and nb,max�N� represent the largest number of bead-
bead contacts for ns=1 and ns=N surface contacts, respectively. The values
for the range of the log-density of states �� ln�g��, and its uncertainties
��ln�g�� represent results after umbrella sampling. For N=16 and N=32, the
states in this table are believed to be the complete set; for N=64, only states
included in our evaluation are represented.

N 16 32 64

Nu 4 3 2
Ku /109 1 16, 10, 18 18.5, 18.8
Ns 748 3467 15 268
nb,max�1� 53 128 288
nb,max�N� 34 76 163
� ln�g� 50.8 109.5 227
Average �ln�g� 0.008 0.008 0.015
Median �ln�g� 0.004 0.003 0.004
Maximum �ln�g� 0.18 0.5 1.5000

FIG. 4. Most probable states for a given number of surface contacts ns and
field �b. The lines represent the average number of bead contacts
�nb�ns ,�b�� as function of the number of surface contacts for five fields �b,
as indicated in the figure. The shaded areas surrounding the lines indicate
the states that have significant probability of occupation; the sum of the
probabilities associated with these states is 2 /3. The symbols at the upper
boundary of the graph indicate the maximum values of nb for given ns.
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=1 than for the other fields, since �b=1 is closer to the field
value of the coil-globule transition �see Sec. IV C� than the
others. Geometrically, the size of the fluctuations is associ-
ated with the inverse of the curvature of the log-density of
states surface.

For most accessible states, the density of states is a mo-
notonously decreasing function of ns at constant nb, i.e., the
states are predominantly occupied for attractive surface in-
teractions. Only for a range of states with small ns and very
large nb values is the slope of ln�g� for fixed nb positive.
These states become populated predominantly when �s is
negative and �b is large and positive.

B. Adsorption in good solvent

To explore adsorption in good-solvent conditions, the
bead-contact field is set to �b=0 so that chain segments in-
teract with each other only through excluded volume inter-
actions. Density of states and production results are evalu-
ated as described in Sec. III for a range of surface fields �s.
In Fig. 5 we present results for the average number of surface
contacts and their fluctuations as a function of the surface
field �s. For negative �s values, the surface is repulsive and
the number of surface contacts is near 1, the smallest pos-
sible value. As �s increases, the surface becomes increas-
ingly more attractive and the number of surface contacts in-
creases until it approaches N, the largest possible value. The
transition between desorbed and adsorbed states becomes
steeper with increasing chain length which is an expected
finite size effect. The fluctuations �s are small for repulsive
and very attractive surfaces and have a maximum in the tran-
sition region. The locations of the maxima are �s=1.29, 1.24,
and 1.19 for chains of length N=16, 32, and 64, respectively.
We use maxima in �s to identify the transition fields for
surface adsorption in Sec. IV E.

The shape of a tethered chain may be described with the
contributions Rg,z

2 �Rg,�
2 and Rg,xy

2 �2Rg,�
2 to the radius of

gyration Rg
2.26 For repulsive or weakly adsorbing surfaces,

the chain assumes mushroom configurations whose exten-
sions parallel and perpendicular to the wall are comparable,
Rg,��Rg,�. As the surface becomes more attractive, Rg,� de-
creases and Rg,� increases, so that the ratio Rg,z

2 /Rg,xy
2

=0.5Rg,�
2 /Rg,�

2 decreases rapidly in the transition region. A
scaling analysis shows that the ratio is independent of chain
length at the adsorption transition.26 In Fig. 6 we present
results for the ratio Rg,z

2 /Rg,xy
2 as a function of �s for �b=0.

The lines represent results from an evaluation of our density
of states and production results for chains of length N=16,
32, and 64. For comparison, we have also included Metropo-
lis Monte Carlo results obtained by us for chains of length
N=32 and 64, and by Descas et al.29 for chains of length
N=20, 40, and 80. The agreement between data obtained
with different methods is good. While longer chains are re-
quired for a detailed comparison with scaling predictions,
our results for Rg,z

2 /Rg,xy
2 show reasonable behavior. The lines

for N=64, 32, and 16 intersect each other at about �s=0.96,
as shown in the inset. Our value for the intercept, �s

=0.96�0.02, is consistent with the results of Descas et al.,29

who determined an intercept of �s=0.98�0.03 from data
which included chains up to length 200.

C. Chain collapse for a hard surface

A polymer chain undergoes a transition from extended to
compact conformations, the coil-globule transition, when the
solvent quality changes from good to poor. For the bond
fluctuation model with attractive bead-bead interactions, �b

�0, this transition may be induced by reducing the tempera-
ture. The continuous coil-globule transition is followed by a

FIG. 5. Average number of surface contacts per monomer �ns� /N and
surface-contact fluctuations �s /N, as a function of the surface field �s for
good-solvent conditions ��b=0�. The lines represent results from the evalu-
ation of the density of states for chains of length N=64 �solid�, 32 �dashed�,
and 16 �dash dotted�, respectively. The graphs for �ns� /N are monotonously
increasing; those for �s /N have a maximum in the transition region.

FIG. 6. Ratio Rg,z
2 /Rg,xy

2 of perpendicular and parallel contributions to the
square radius of gyration as a function of the surface field �s for good-
solvent conditions ��b=0�. The lines represent results from the evaluation of
the density of states and production data for chains of length N=64 �solid�,
32 �dashed�, and 16 �dash dotted�; the inset shows an enlargement of the
region where the lines cross. For clarity, error bars for our calculated values
are shown only in the inset. �The error bars generally increase with increas-
ing N and decreasing �s; for �s=0 they are about twice as large as for the
�s-range of the inset�. The filled symbols with error bars represent Metropo-
lis Monte Carlo results from this work. The open symbols represent Me-
tropolis Monte Carlo results for chains of length N=20, 40, and 80 by
Descas et al. �Ref. 29�.
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discontinuous crystallization transition at lower temperature.
For the model we are studying, which has a range of attrac-
tive interaction ��6, the difference between the transition
temperatures decreases with chain length and, in the limit
N→�, the transitions merge into a single first-order
transition.32

To explore chain collapse for tethered chains, we con-
sider first a hard surface and set �s=0. In Fig. 7 we present
results for the heat capacity, C, as a function of the reduced
temperature T*=1.0 /�b obtained by evaluating our density
of states results for chains of length N=16, 32, and 64. For
comparison, we also present results for the heat capacity of
free chains of length N=32 and N=64, obtained from Wang–
Landau simulations of the BF model.32,38 For each chain
length considered here, the heat capacity shows a peak at low
temperatures followed by a shoulder at higher temperatures.
For free chains, the peak is associated with the crystallization
transition and the shoulder marks the coil-globule transition;
we find the same to be true for the tethered chains. In Fig.
11�a� we present an example for a compact and highly or-
dered conformation of a chain of length N=64 that is typical
for the lowest temperatures.

While the heat capacity values for the tethered and free
chains coincide at high temperatures, there are some differ-
ences at lower temperatures. For chains of length N=64 and
temperatures smaller than T*�1, the free chain heat capacity
values are lower than those of the tethered chain. This is due
to a difference in the simulations; for the free chain, a cutoff
of 272 bead contacts was used while the tethered chain re-
sults include bead contacts up to nb,max=288. For somewhat
higher temperatures, 1�T*�1.5, there is also a small tem-
perature shift �barely visible in the graph� between the heat
capacity curves of the free and tethered N=64 chains. For
chains of length N=32 and temperatures smaller than about
T*=1.2, i.e., below the coil-globule transition, the heat ca-

pacity curve for the free chain is shifted to lower tempera-
tures compared to that of the tethered chain. A comparison of
the normalized density-of-states results for the free and teth-
ered chains of length N=32 shows that the number of avail-
able conformations decreases with increasing bead-contact
number more rapidly for free chains than for tethered chains.
This suggests that the hard surface reduces the relative num-
ber of extended conformations more than the relative number
of compact conformations. Since the fraction of monomers
belonging to the surface of a conformation decreases with
chain length, it seems reasonable that the effect is larger for
shorter chains; in our simulations, the effect has all but dis-
appeared for N=64. In the limit N→�, we expect the tran-
sition temperature for the three-dimensional coil-globule
transition to be the same for free and tethered chains.

To determine the location of the transitions it is conve-
nient to consider the fluctuations in the number of bead con-
tacts �b. These are related to the heat capacity through Eq.
�22�. In Fig. 8 we present tethered chain results for �b as
function of the field �b for chains of length N=16, 32, and
64 at �s=0. The graphs for N=32 and N=64 show two well
separated maxima while the graph for N=16 has one maxi-
mum associated with the coil-globule transition and a shoul-
der associated with the globule-globule transition. The loca-
tions of the maxima for the coil-globule transitions are 0.91,
0.79, and 0.71 for chains of length N=16, 32, and 64, respec-
tively. The field values for the globule-globule transitions are
1.47 �estimated�, 1.05, and 0.850 for N=16, 32, and 64 re-
spectively. The values for the globule-globule transitions
compare well with those obtained from the peaks in the heat
capacity, which yield �b values of 1.48, 1.08, and 0.853 for
N=16, 32, and 64, respectively. We use maxima in �b to
identify the transition fields for chain collapse in Sec. IV E.

The transitions of single untethered polymer chains have
been investigated intensively with a variety of off-lattice
polymer models.30,31,44–51 Except for the shortest chains and
the most short-ranged interactions, the heat capacity as a
function of temperature shows two prominent features; a

FIG. 7. Heat capacities per monomer, C /N, as a function of the reduced
temperature T*=1 /�b. The solid �N=64�, short-dashed �N=32�, and dash-
dotted �N=16� lines represent results for chains tethered to a hard surface
��s=0�. The long-dashed �N=64� and dotted �N=32� lines represent results
for free chains �Refs. 32 and 38�. The estimated uncertainties of the results
for the tethered chains are smaller than the line thickness, except for N
=64 at very low temperatures, T*�0.7, where they correspond to about
twice the line thickness.

FIG. 8. Monomer-monomer contact fluctuations, �b /N, as a function of the
field �b for a hard surface, �s=0. The lines represent results from the evalu-
ation of the density of states for tethered chains of length N=64 �solid�, 32
�dashed�, and 16 �dash dotted�.
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peak at higher temperatures that indicates the transition from
disordered coil conformations to disordered globule confor-
mations, and a peak at low temperatures that indicates the
transition from a liquidlike disordered globule to a solidlike
ordered globule. Typically, the peak associated with the
order-disorder transition, which is sometimes referred to as
the “freezing” transition, sharpens with increasing chain
length and is accompanied by a bimodal probability distribu-
tion as expected for a discontinuous transition. Our results
for tethered and free chains show that the chain collapse in
the bond fluctuation model is analogous to chain collapse in
off-lattice models.

D. Chain collapse in two dimensions

If a chain is completely adsorbed to a surface, a collapse
transition between two-dimensional states may be observed.
To investigate this transition, we chose a strong surface field,
�s=8, and evaluated the density of states as usual, with prob-
abilities given by Eq. �14�. For comparison, we also per-
formed calculations using only density-of-states results with
the maximum number of surface contacts, ns=N, and evalu-
ated them with probabilities given by Eq. �25�. For the range
of �b values relevant to the collapse transition, the results are
indistinguishable. �For much higher �b values, the transition
to layered states appears in the evaluation of the full density
of states but not the restricted set.� In Fig. 9 we present
results for the bead-contact fluctuations �b of tethered chains
as a function of �b for chains of length N=16, 32, and 64 at
�s=8. For N=16, only a single maximum is discernible,
while for N=32 the maximum is broad and accompanied by
a shoulder on the high �b side. For N=64, a narrower peak in
�b is preceded by a shoulder on the low �b side. In analogy
with the two-stage collapse transition for chains tethered to a
hard surface, we expect the features at low and high �b val-
ues to indicate coil-globule and globule-globule transitions in
two dimensions, respectively.

To investigate this further, we calculated the square ra-
dius of gyration Rg

2 and bond lengths B2 of the chains. In Fig.
10 we present results for these quantities and their deriva-

tives with respect to �b as a function of �b for a chain of
length N=64 in the surface field �s=8. For comparison, the
average number of bead contacts, �nb� /N, and their fluctua-
tions, �b /N, are also shown. The graphs show that the largest
changes in the radius of gyration occur near the shoulder of
the �b graph, while the largest changes in the bond length
occur near the maximum of �b. Since the radius of gyration
measures the overall size of a chain conformation, while the
bond lengths represent a small-scale property, the results
suggest that a coil-globule transition is followed by a local
rearrangement of segments. As in the three-dimensional case,
the states beyond this latter transition are highly ordered, i.e.,
we interpret this “globule-globule transition” as a transition
from a fluidlike to a crystal-like state. In Fig. 11�b� we show
an example for such a highly ordered two-dimensional con-
formation of a chain of length N=64. As expected for an
order-disorder transition, we find a bimodal probability dis-
tribution for the occupation of states at the globule-globule
transition.

A two-stage transition from a disordered extended coil
through a disordered globule to an ordered globule in two
dimensions has also been observed in simulations with a

FIG. 9. Monomer-monomer contact fluctuations, �b /N, as a function of the
field �b for a very attractive surface, �s=8. The lines represent results from
the evaluation of the density of states for tethered chains of length N=64
�solid�, 32 �dashed�, and 16 �dash dotted�.

FIG. 10. Chain collapse for large surface field. The top panel shows the
average square bond lengths B2, radius of gyration Rg

2 divided by the chain
length N, and the average number of monomer-monomer contacts per bead
�nb� /N as a function of the monomer-contact field �b for a chain of length
N=64 and a surface field �s=8.0. The bottom panel shows how these quan-
tities change as the chain undergoes the collapse transition. The dashed and
dash-dotted lines represent absolute values of the numerical derivatives
��Rg

2 /��b��s
and ��B2 /��b��s

, respectively. The solid line represents �b /N as
in Fig. 9.
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parallel tempering algorithm of an off-lattice �bead-spring�
model.48 The symmetry of the two-dimensional ordered con-
formations is model dependent. For the BF model employed
in this work, the unit cell for the ordered interior of Fig.
11�b� has basis vectors a1=2aŷ and a2=aŷ+2ax̂, where x̂
and ŷ are the unit vectors in the x and y directions, respec-
tively, and a is the lattice constant. The number of nearest
neighbors �six� is the same as for a hexagonal lattice, which
is the symmetry for the two-dimensional ordered state of the
off-lattice model.48 For the ISAW model, on the other hand,
compact two-dimensional chain conformations have the
symmetry of the square lattice with four nearest neighbors. It
is an open question to what extent these kinds of two-
dimensional states carry over to chemically realistic models
including rough substrates.

E. Phase portraits

In the preceding sections we have employed maxima in
the susceptibilities �s and �b to identify transition fields �s

and �b for chain adsorption in good solvent and for chain
collapse near hard and very attractive surfaces. In this sec-
tion, we extend this approach to a wide range of conditions
and construct a phase portrait for chains of length N=64,
shown in Fig. 12, that may be compared with the phase
diagram of Fig. 1 discussed in the Introduction.

From the maxima and “shoulders” of the susceptibilities
we identified transition lines in the space of field variables �s

and �b that separate the DE, AE, DC, AC, and LS regions.
The shaded area near the center of the phase portrait in Fig.
12 marks a range of field values where the susceptibility

“landscapes” are too complex to identify all of the maxima
clearly. This is the reason why some of the lines end rather
than merge with the other lines. In this discussion, we focus
on field values outside the shaded area.

In the diagram of Fig. 12, the horizontal solid lines sepa-
rating the DE and DC regions represent maxima of �b asso-
ciated with the dual collapse transition in three dimensions.
Similarly, the horizontal solid and dashed lines separating the
AE and AC regions represent maxima and shoulders of �b

associated with the collapse transition in two dimensions.
For both collapse transitions, the fluctuations in the number
of surface contacts, �s, are not significant. The vertical solid
line separating the DE and AE regions represents maxima in
�s associated with adsorption in good solvent. For this tran-
sition, the fluctuations in the number of bead contacts, �b, are
small. The two solid lines that separate the regions of ad-
sorbed states �AE and AC� from fully or partially desorbed
states in poor-solvent conditions �DC and LS� represent
maxima of both surface- and bead-contact fluctuations. The
dotted lines in the LS region represent shallow maxima of �s.
The error bars show the spread of the location of these
maxima when different sets of density-of-states values are
evaluated. The transitions associated with these maxima are
structural, discontinuous transitions that depend sensitively
on the details of the available compact chain conformations.

The AC states for high �s and �b values have strictly
two-dimensional, single-layer conformations with almost
hexagonal symmetry as shown in Fig. 11�b�. The chain con-
formations for slightly lower �s values, in the region be-
tween the two solid lines near the upper right corner of Fig.
12, have exactly two layers, each with nearly hexagonal
symmetry and shifted against each other by one lattice con-
stant a of the underlying cubic lattice. The transition from
single to double layers is similar in nature to the layering

FIG. 11. Examples for compact conformations of chains of length N=64. �a�
A highly ordered three-dimensional conformation representative of the des-
orbed compact �DC� region of the phase portrait in Fig. 12. �b� A highly
ordered two-dimensional �single-layer� conformation representative of the
adsorbed compact �AC� region of the phase portrait. In both diagrams, the
size of the circles corresponds to the hard core diameter of the beads; the
bonds are shown as wide lines.

FIG. 12. Phase portrait for a tethered chain of length N=64 in the space of
the surface field ��s� and bead-contact field ��b�. The regions are named as
in Fig. 1. The solid lines represent maxima of surface ��s� and bead-contact
��b� fluctuations, as explained in the text. The dashed lines are an estimate
for the location of the coil-globule transition from the “shoulder” on the
susceptibility �b. The dotted lines represent shallow maxima in the suscep-
tibility �s that depend sensitively on the details of the available compact
chain conformations. In the shaded area near the center of the diagram, the
susceptibility “landscapes” are too complex to identify all of the maxima
clearly. This is why some of the lines end rather than merge with other lines.
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transition observed in the ISAW model. In the limit of infi-
nite chain length, the slope of the line separating the two-
layer from the one-layer conformations may be determined
by equating the energy per segment of the single- and
double-layer conformations.14 For the ISAW model, the
value of this slope is 1 /2. For the bond fluctuation model
employed in this work, the calculated value for infinitely
long chains is 1 /3 while finite size effects increase it to a
value of 0.38 for the chains of length N=64. States in the
region marked LS in Fig. 12 are very different from the
single- and double-layer states discussed above. The chain
conformations are three dimensional with a symmetry group
corresponding to a cubic lattice with basis. The number of
surface contacts decreases stepwise through the transitions
marked by dotted lines until only a single surface contact is
left in the region marked DC.

For the model of a tethered chain investigated in this
work, all transitions from good- to poor-solvent conditions
are dual in nature. The character of the transitions, continu-
ous or discontinuous, and their dependence on the surface
field �s will be discussed in more detail in a later publication.
Of course, the transitions between different states of a finite
chain are no sharp phase transitions, as they occur for sys-
tems in the thermodynamic limit, but rather gradual changes
in the weights of various microstates of the model system.
With increasing chain length, the separation between the
transition lines decreases so that a phase portrait resembles
more closely the phase diagram of Fig. 1 as the chain length
increases. In agreement with theoretical predictions for the
ISAW,8 we find that the transition line describing the coil-
globule transition in good solvent is horizontal and perpen-
dicular to the adsorption transition line. In contrast to the
ISAW model, where the crystalline phase always has a
simple cubic symmetry and the most compact conformation
is cubic, the BF model supports more than one ordered phase
and the most compact conformation is highly faceted. This
leads to a complex sequence of transitions in the poor-
solvent regime, which we will investigate in more detail in
later work.

F. Relation to real polymers near surfaces

Transitions in polymers near surfaces may be induced by
changing the solvent quality or, more typically, by changing
the temperature. Since the BF model employed in this work
orders without forming lamellae and since polymer crystal-
lization is typically dominated by kinetic effects22 a direct
comparison with available experimental data on surface crys-
tallization of polymers is not possible. However, we will
discuss some qualitative aspects of ordered chains near sur-
faces. Experiments on alkanes physisorbed on graphene sur-
faces at low coverage show the chains to be rodlike �all trans
conformations� and oriented parallel to the surface.52,53 Ex-
periments on thin films of a variety of crystallizable poly-
mers show that the orientation of the chains relative to sur-
face depends on the thickness of the layer �see, for example,
Ref. 54�. For very thin films, one typically finds “edge-on”
lamellae corresponding to chains with their backbones ori-
ented perpendicular to the surface. For example, for poly-

�ethylene oxide� �PEO� films on bare silicon wafers, crystal-
lites with chain backbones perpendicular to the surface grow
from a layer of adsorbed, noncrystallized chains oriented
parallel to the surface through a partial dewetting of the
surface.55,56

The fields �b and �s employed in this work combine the
inverse temperature � and the interaction parameters for net
monomer-monomer interactions �b and monomer-surface in-
teractions �b, respectively �see Eq. �12��. In our phase por-
trait of Fig. 12, the origin corresponds to the limit of infinite
temperature while a range of temperatures at constant inter-
action parameters corresponds to a segment of a straight line
through the origin with the slope given by the ratio �b /�s of
the interaction parameters. For example, for systems without
attractive surface interactions �hard surface� a decrease in
temperature moves the system up along the vertical line with
�s=0 in Fig. 12 and leads to the two-stage transition from
desorbed extended to desorbed compact states. When the
monomer-monomer interaction parameter �b has a much
smaller magnitude than the surface interaction parameter �s,
a decrease in temperature moves the system along an almost
horizontal line from �0,0� to higher �s values in Fig. 12 and
leads to the adsorption transition from desorbed �DE� to ad-
sorbed �AE� extended chain conformations. For systems
where the interaction parameters �b and �s are comparable in
size, our phase portrait predicts transitions from the disor-
dered DE states to the ordered three-dimensional LS states
upon lowering the temperature. While the details of the LS
states clearly depend on the model, layered states are not
uncommon. Off-lattice simulations of confined polymers, for
example, show layered states for strong confinement48 and
the adsorption of small molecules from the vapor onto solid
substrates leads to the occurrence of layered structures
�“multilayer adsorption”�. When the surface interactions are
somewhat larger than the monomer-monomer interactions, a
decrease in temperature is expected to induce chain adsorp-
tion to the disordered AE states, followed by transitions to
the ordered LS states. During the ordering, the chain partially
desorbs from the surface to reach the LS states. A combina-
tion of partial dewetting and ordering in a three-dimensional
crystallite is also observed in experiments on PEO on
silicon.55 Finally, when the surface interactions are very
strong, a transition between two-dimensional disordered
�AE� and ordered �AC� states is expected from our calcula-
tions. For real polymeric systems, such strong surface attrac-
tions might be provided by specific interactions �for ex-
ample, hydrogen bonding� between the surface and the
polymer.

While some polymers undergo a crystallization transi-
tion as the temperature is lowered there are many polymers
that remain amorphous. For example, in atactic poly�butadi-
ene� the random distribution of monomers of different ste-
reoregularity prevents the crystallization of the chains. In
order to describe noncrystallizable polymers, one introduces
an element of randomness in the composition of the model
polymer. In this case, we expect the phase portrait in field
space to be qualitatively the same as shown in Fig. 12 for
low �b values, but to contain single lines of continuous tran-
sitions between disordered extended and compact states. In
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addition, there may be minor transitions in the compact re-
gions corresponding to local reordering of sections of a
chain.

V. SUMMARY AND CONCLUSIONS

In this work we performed Monte Carlo simulations of a
bond fluctuation model for a tethered chain with two-
dimensional Wang–Landau algorithms and umbrella sam-
pling. The simulations yield density-of-states results that
have been evaluated for interaction parameters spanning the
range from good- to poor-solvent conditions and from repul-
sive to strongly attractive surfaces. For given fields �s and
�b, we calculated expectation values for chain dimensions,
contact numbers for surface- and monomer-monomer con-
tacts, and fluctuations in the contact numbers. Three types of
transitions were investigated in some detail. For adsorption
in good solvent, we compared our results with Metropolis
Monte Carlo data for the same model and found good agree-
ment. For the collapse transition in three dimensions, we
considered chains tethered to a hard surface and found them
to behave very similar to free chains, with the differences
between the two situations decreasing with increasing chain
length, as expected. For the collapse transition in two dimen-
sions, we found a dual transition with the same sequence of
transitions that is observed for three-dimensional chains: a
coil-globule transition that changes the overall chain size is
followed by a local rearrangement of chain segments.

In order to investigate the overall phase behavior of the
tethered chains considered in this work, we located maxima
of the susceptibilities �s and �b in the �s-�b plane. We found
that all transitions from good- to poor-solvent conditions are
dual in nature and that the separation between the two lines
belonging to the same transition decreases with increasing
chain length. In agreement with theoretical predictions for
the ISAW model,8 we find that the transition line describing
the coil-globule transition in good solvent is horizontal and
perpendicular to the adsorption transition line. For poor-
solvent conditions, early work on the ISAW model predicted
the existence of a surface-attached globule �SAG� phase11–13

which was later found to consist of a whole sequence of
layered states.14 In the corresponding parameter region we
find one transition �between single- and double-layer states�
that is similar to the AC to LS �SAG� transition of the ISAW.
The next transition of the BF model, however, changes the
symmetry of the ordered segments and has no correspon-
dence in the ISAW model. From the maxima of the suscep-
tibilities of finite-length chains alone it is not possible to
resolve the nature of the transitions near points where tran-
sition lines meet. This is an interesting question that we will
try to address in future work.
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APPENDIX: SIMULATION DETAILS

In this section, we present details of the density-of-states
and production simulations for chains of length N=16, N
=32, and N=64. For each chain length, density of states
results were generated with Wang–Landau algorithms and
then refined with umbrella sampling. In order to compare
results from groups of simulations, the average over the ln�g�
values in the interior �N /4�ns�3N /4, 5N /16�nb

�25N /16� of the range of accessible states is calculated for
each simulation and the ln�g� values are shifted by this
amount. To determine uncertainties for the WL results, the
average and standard deviation of the ln�g� values are calcu-
lated for each state �ns ,nb�. For umbrella sampling results,
the log-density of states values are weighted by the length of
the umbrella sampling simulation and the weighted average
ln�g� and standard deviation �ln�g� are calculated. Parameters
for the umbrella sampling simulations and some numerical
characteristics of the final densities of states are presented in
Table I. In the following, we highlight differences in the
simulations for the different chain lengths. Production was
carried out either in separate simulations or concurrently
with the construction of the density of states. A summary of
the production simulation parameters is presented in Table II.

N=16. For chains of length N=16, four simulations with
the original Wang–Landau algorithm were performed. The
histogram was considered flat when the visits to each indi-

vidual �ns ,nb� state were no less than 0.8h̄, where h̄ is the
average of the visits to all states. The simulations required
between 1.2�109 and 1.9�109 Monte Carlo steps to con-
verge. The results agreed well with each other; the average,
median, and maximum standard deviations of the ln�g� val-
ues are 0.017, 0.008, and 0.63, respectively. The largest de-
viations occur for states with the largest number of bead
contacts for a given number of surface contacts, i.e., for
states near the upper rim of the range of accessible states in
Fig. 2. Umbrella sampling simulations with 109 Monte Carlo
steps were performed for each of the WL density-of-states
results for N=16 and evaluated as described in Sec. II D. The
agreement between the four different results is excellent, as
may be seen from the values of the standard deviations pre-
sented in Table I. As before, the largest deviations occur at
the upper rim of the range of accessible states.

TABLE II. Production parameters for chains of length N=16, N=32, and
N=64. The table entries represent the simulation length in MC steps, where
configurations are evaluated every ten MC steps. The left column indicates
the type of simulation. For simulations sampling with the density of states,
the number of replicas �Nr� is indicated and, in one case, the maximum
number of bead contacts considered. For simulations with the Metropolis
acceptance criterion, the values for the field variables �s and �b are shown.

N 16 32 64

Nr=1 1�108 4�109 3.35�109

Nr=3 1�109

Nr=4, nb�256 2.6�108

Nr=5 1�109 3�108

�s=�b=0 1�109 1�109 1.5�109

�s=�b=−1 1�109

�s=�b=−2 2�109 1�109 4�108
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N=32. For chains of length N=32, simulations with the
original Wang–Landau algorithm would not converge. We
modified the flatness criterion and considered averages over
groups of states. Each group consisted of N states and two
sets of groups were created. One set was formed by going up
along columns in the �ns ,nb� plane and adding states to a
group until it was filled, continuing in the next column when
the top was reached before the group was complete. The
other set was formed by going along rows in the same way.
The histogram was considered flat when the visit to each
group of states in the two sets was no less than 0.8 and no
more than 1.25 of the average of the visits over all groups.
We obtained results from two simulations �A and B� with a
Wang–Landau algorithm where the density of states was up-
dated only for accepted moves �see Eq. �3�� and from one
simulation �C� with a five-replica Wang–Landau algorithm
where the density of states was updated after accepted as
well as after rejected moves, Eqs. �3� and �4�. The results for
the density of states from the five replicas agreed well in the
regions of overlap and were combined with a simple linear
switching function.

The N=32 simulations took between 1.3�1010 and 4.1
�1010 MC steps to converge. All simulations missed or se-
verely underestimated the density-of-states values of four
states on the upper rim of accessible states in Fig. 2. Except
for states on the rim, the two single-replica results A and B
agree reasonably well with each other, the average, median,
and maximum standard deviations of the ln�g� values are
0.029, 0.011, and 4.4, respectively. However, there are sys-
tematic deviations between the ln�g� values for high nb-states
between result C from the five-replica simulation and results
A and B.

In order to prepare for umbrella sampling, the density-
of-state results for N=32 from the Wang–Landau simulations
were augmented by assigning reasonable guesses to the ln�g�
values that were missed or nearly missed in the simulations.
We performed umbrella sampling simulations with the pa-
rameters given in Table I and updated the density-of-states
results as described in Sec. II D. The systematic deviations
between results A, B, and C disappeared after umbrella sam-
pling and the density-of-states values agree very well �see
the values for the standard deviations in Table I�, except for
states very close to the upper rim of the range of accessible
states in Fig. 2. For results A and B, umbrella sampling led to
significant increases in the normalized ln�g� values for a
large range of states with high numbers of bead contacts. For
result C, umbrella sampling decreased the normalized ln�g�
values slightly for states with very high numbers of bead
contacts and changed the values significantly on the rim of
accessible states. One state was not visited in the C simula-
tion and its density-of-states value was calculated from the A
and B results only. Production simulations were carried out
with the parameters in Table II. For some states near the rim,
production data were supplemented by evaluating stored
chain conformations.

N=64. For chains of length N=64, one density-of-states
result with a cutoff in the number of bead contacts at nb

=4N was obtained with the modified Wang–Landau algo-
rithm described for chains of length N=32 �simulations A

and B�, above. This simulation was completed in 2�109 MC
steps; simulations without cutoff would not converge.

In order to obtain density-of-states results for a larger
range of bead-contact values, we applied the global update
algorithm described in Sec. II C. For the results presented
here, we used the following shift parameters in Eq. �6�: 	
=
=�=104 ln�fk�, where ln�fk�=2−�k−1� is the increment of
the log-density of states at refinement level k. The first global
update simulation used a value of 
=102 ln�fk� for the uni-
form growth criterion. It was started at the k=15 level and
allowed us to progress through about 8�108 MC steps be-
fore the refinement level was set to k=18. At this level, about
7.5�108 MC steps were carried out before our group-of-
state flatness criterion was satisfied and the simulation pro-
gressed through the final two levels in a standard Wang–
Landau algorithm with our flatness criterion, which took
about 3.5�108 MC steps, for a total simulation time of
about 1.9�109 MC steps. The density-of-states values ob-
tained in this global update simulation agreed reasonably
well in the range of common states with the results obtained
in the simulation with cutoff described above. It extended the
range of visited states to higher bead contacts but it missed a
number of states with large surface- and bead-contact values
that had been found in the simulation with cutoff. After re-
moving states whose density-of-states values had been se-
verely underestimated, we combined the results from the two
simulations with a linear switching function; this combined
density of states is referred to as result A in the following.

The second global update simulation was started at the
k=18 level and used a value of 
=10 ln�fk�. With these pa-
rameters, the density of states in the interior is generated
through a larger number of smaller shifts. The simulation
was allowed to proceed through a total of about 3.15�1010

MC steps, after which time we collected the density of states,
our result B. During this time, global updates and the addi-
tion of new states became increasingly rare. For example,
only 31 of the more than 15 000 visited states were found in
the second half of the simulation. The range of visited states
from this simulation is larger than that of result A. The dif-
ferences between results A and B are largest for states with
very high bead-contact values; the average, median, and
maximum standard deviations of the ln�g� values are 0.16,
0.1, and 18.3. In order to prepare for umbrella sampling, the
density-of-state results A and B were smoothed by assigning
reasonable guesses to the ln�g� values that were missed or
nearly missed in the simulations.

Unfortunately, the umbrella sampling simulations for
both A and B missed some states completely �20 for A and
12 for B out of a total of 15 275 input states�, nearly missed
a few others �8 for A and 2 for B�, and found some states for
the very first time �12 for A and 14 for B, with 4 in common
for a total of 22 new states�. All of the problematic states are
very close to the upper rim of the range of accessible states
shown in Fig. 2. Except for the newly found states, which
were discarded, the ln�g� values were updated at the end of
the umbrella sampling as described in Sec. II D. For states
that were found in both umbrella sampling simulations, the
log-density of states results were combined as described
above. For states that had been missed or nearly missed in
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one of the umbrella sampling simulations, we used the
density-of-states result from the other simulation and as-
signed an uncertainty of �ln�g�=1.5. Except near the rim, the
agreement between the results is very good �see Table I�.
Production simulations were carried out with the parameters
in Table II. For some states near the rim, production data
were supplemented by evaluating stored chain conforma-
tions. For 13 states on the rim, values of the quantities of
interest were estimated by extrapolation from data with
smaller numbers of bead contacts and generous errors were
assigned. The impact of the rim states depends on the values
of the field variables, in particular, on the value of �b, as
discussed in Sec. IV A. In this work, we focus on conditions
where their impact is small. For future evaluation, we are
currently performing simulations with a slightly modified
simulation algorithm that we hope will improve the density-
of-states results near the rim.
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