Numerical methods
for solving 1st order, ordinary differential equations (ODEs) with initial conditions

common structure: \(\frac{dy}{dt} = f(t, y) \) with initial value \(y(t_0) = y_0 \)

Euler method:

Taylor expansion: \(y(t + \Delta t) = y(t) + \frac{dy}{dt} \Delta t + O((\Delta t)^2) \)

insert ODE \(\frac{dy}{dt} = f(t, y) \) \(\Rightarrow \) \(y(t + \Delta t) = y(t) + f(t, y) \Delta t + O((\Delta t)^2) \)

introduce discrete times \(t(i) \) with fixed time steps \(\Delta t \)
\(t(i + 1) = t(i) + \Delta t \) with \(t(1) = t_0 \) (initial time), \(t(N + 1) = t_f \) (final time) and \(y(i) = y(t(i)) \)

Euler method: \(y(i + 1) = y(i) + f(t(i), y(i)) \Delta t \) with \(y(1) = y_0 \)

Note: The Euler method is the simplest and “fastest” method (only one evaluation of \(f \) per time step) but at the price of accuracy and precision.
The simplest improvement is going to smaller time steps (error \(\sim (\Delta t)^2 \)).
However, errors accumulate quickly and the method is not necessarily stable (see pendulum).

2nd order Runge-Kutta method with fixed step size

Remember: the centered difference approximation to the derivative is an order of \(\Delta t \) better than the forward difference approximation.

middle of the time interval: \(t_{\text{mid}}(i) = t(i) + \frac{1}{2} \Delta t \)

with centered difference approximation: \(y(i + 1) \cong y(i) + \Delta t \frac{dy}{dt} \bigg|_{t_{\text{mid}}(i)} = y(i) + \Delta t f(t_{\text{mid}}(i), y_{\text{mid}}) \)

How do we find \(y_{\text{mid}}(i) \)?

one answer: \(y_{\text{mid}} \cong y(i) + \frac{\Delta t}{2} \frac{dy}{dt} \bigg|_{t(i)} = y(i) + \frac{\Delta t}{2} f(t(i), y(i)) \)

2nd - order Runge - Kutta method
\(y(i + 1) = y(i) + \Delta t f(t(i) + \frac{1}{2} \Delta t, y(i) + \frac{1}{2} \Delta t f(t(i), y(t(i)))) \) with \(y(1) = y_0 \)

Note: for each time step, two function calls have to be evaluated (in contrast to one function call for the Euler method) but the error \(\sim (\Delta t)^3 \) is an order of \(\Delta t \) smaller than for the Euler method.
The Runge-Kutta method is based on a Taylor series expansion of \(y(t + \Delta t) \) and can be systematically improved by keeping higher order terms at a cost of more time (see Numerical Recipes)
4th order Runge-Kutta method with fixed step size

The most widely used fixed step-size Runge Kutta method is of 4th order

Let
\[k_1 = \Delta t f(t(i), y(t(i))) \]
\[k_2 = \Delta t f(t(i) + \frac{1}{2} \Delta t, y(t(i)) + \frac{1}{2} k_1) \]
\[k_3 = \Delta t f(t(i) + \frac{1}{2} \Delta t, y(t(i)) + \frac{1}{2} k_2) \]
\[k_4 = \Delta t f(t(i) + \Delta t, y(t(i)) + k_3) \]

2nd - order Runge - Kutta method
\[y(i+1) = y(i) + k_2 + O(\Delta t^3) \]

4th - order Runge - Kutta method
\[y(i+1) = y(i) + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) + O(\Delta t^5) \]

Note: when you use a fixed step-size method, always make sure in the end that your results do not change significantly with step size.

Note: going to higher order and smaller step-sizes to improve accuracy can be very time consuming and may not be the best approach → investigate the source of the problem

Adaptive step-size methods

Consider a function \(y(t) \) like this:

It is desirable to have: (why?)
- small steps in the region of large variation
- large steps in the region of small variation

⇒ adapt the step size of a Runge-Kutta method as you are calculating the solution

Idea of a 4th/5th order method:

For a given step size \(\Delta t \)
do a single step in 5th order approximation \(\Rightarrow y(i+1) \)
do the same step in 4th order approximation \(\Rightarrow y^*(i+1) \)

Then \(\Delta y = |y(i+1) - y^*(i+1)| \) is a measure for the error, which is \(O(\Delta t)^5 \)

Hence, we can determine a new step size \(\Delta t \) that matches our tolerance for \(\Delta y \)
if \(\Delta y \) is too large ⇒ reduce the step size \(\Delta t \) and try again
if \(\Delta y \) is too small ⇒ increase the step size \(\Delta t \) and try again
There are several ways to specify the tolerance:

1. **by relative error**
 When would this be a problem? \(\frac{\Delta y}{y(t)} < \varepsilon_{relative} = \text{RelTol} \) in Matlab

2. **by absolute error**
 What has to be considered here? \(|\Delta y| < \varepsilon_{absolute} = \text{AbsTol} \) in Matlab

3. **by cumulative error**
 - if conserved quantities are known (for example energy or momentum) one can adjust the step size to keep the conserved quantities within tolerance
 - this requires special programming for each particular problem, but is very powerful when available

Matlab provides two ODE solvers based on adaptive step-size Runge-Kutta methods ode23 (2nd/3rd order method) and ode45 (4th/5th order method)

% calculate a solution to the nuclear decay problem from the built-in ode45 solver
options=odeset('RelTol',1.e-6,'AbsTol',1.e-6);
[tt,yode45]=ode45('f1nuc',t,y0,options);

solution, rhs of \(\frac{dy}{dt} \), times, initial vector \(y(t) \), dy/dt, vector condition