Stadium billiard with soft repulsive walls

Soft repulsive (Weeks-Chandler-Andersen) potential

\[u(R) = \begin{cases}
4 \varepsilon \left[\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^{6} \right] + \varepsilon & \text{for } R \leq r_c \\
0 & \text{for } R > r_c
\end{cases} \]

Pair potentials, \(\varepsilon = 1 \)

Force on the ball near the wall of a stadium with "soft" walls

Magnitude of the force:

\[F(R) = -\frac{dU}{dR} = \frac{48}{\sigma^2} \left[\left(\frac{\sigma}{R} \right)^{14} - \frac{1}{2} \left(\frac{\sigma}{R} \right)^{8} \right] R \]

Direction of the force: along (inward pointing) normal vectors

\[F_x = F(R)n_x \]
\[F_y = F(R)n_y \]
Calculate the force components:

In general:

\[F_x = -\frac{\partial U}{\partial x} \quad \text{Here: } U = U(R) \]

\[F_y = -\frac{\partial U}{\partial y} \]

\[\Rightarrow n_x = \frac{\partial R}{\partial x} \]

\[n_y = \frac{\partial R}{\partial y} \]

We need an expression for the distance \(R \) (the distance of the ball from the wall) in terms of the \(x \) and \(y \) coordinates of the ball.

The components \(n_x \) and \(n_y \) can then be calculated by taking a derivative.

Region 2 \(-\alpha r < x < \alpha r\)

\[R = r - y \quad \text{for } y > 0 \]

\[R = r + y \quad \text{for } y < 0 \]

Region 1 \(-(\alpha + 1)r < x < -\alpha r\)

\[(r - R)^2 = (x + \alpha r)^2 + y^2 \]

\[\Rightarrow R = r - \sqrt{(x + \alpha r)^2 + y^2} \]

Region 3 \(\alpha r < x < (\alpha + 1)r\)

\[(r - R)^2 = (x - \alpha r)^2 + y^2 \]

\[\Rightarrow R = r - \sqrt{(x - \alpha r)^2 + y^2} \]

Taking the derivatives, we find for \(y > 0 \)

\[n_x = \frac{\partial R}{\partial x} = \begin{cases}
\frac{x + \alpha r}{\sqrt{(x + \alpha r)^2 + y^2}} & \text{Region 1} \\
0 & \text{Region 2} \\
\frac{x - \alpha r}{\sqrt{(x - \alpha r)^2 + y^2}} & \text{Region 3}
\end{cases} \]

For \(y < 0 \), \(n_x \) stays the same but \(n_y \) changes sign.
• Molecular dynamics (MD) simulations are a method for solving Newton’s equation of motion for classical particles interacting with each other, the walls of the container, external fields, etc.

• In MD simulations, just like in other numerical methods for solving differential equations, time is a discrete variable that may be labeled by an integer, say \(k \).

• One solves Newton’s equation of motion with a numerical (finite difference) algorithm to go from time \(t_k \) to time \(t_{k+1} = t_k + \delta t \), where \(\delta t \) is the step size.

• One such method is the Verlet algorithm, others include the “velocity Verlet” algorithm, the “leap-frog” method, and “predictor-corrector” methods. The methods differ in ease of implementation, speed and accuracy, where all these properties depend on the system that is simulated (see, for example, J. M. Haile, *Molecular Dynamics Simulation*, Wiley, New York, 1992, chapter 4).

• It is always a good idea to monitor quantities that are expected to be conserved in order to recognize when the algorithm/parameters lead to systematic errors.

All finite difference methods are based on Taylor expansions of the coordinates.

For simplicity, we focus on the \(x \)-components (\(y \) and \(z \) components are analogous), drop the particle subscripts and write \(x(t) \) for the position at time \(t \), and \(v(t) \) and \(a(t) \) for the corresponding velocity, and acceleration at time \(t \), respectively.

\[
\begin{align*}
\frac{dx}{dt} &= v(t) \\
\frac{dv}{dt} &= a(t) \\
\frac{da}{dt} &= \theta(t)
\end{align*}
\]

Add (1) and (2), note that the odd terms drop out, and solve for \(x(t + \delta t) \).

\[
x(t + \delta t) = 2x(t) - x(t - \delta t) + \frac{\delta t}{3!} \frac{d^3 x}{dt^3} + O(\delta t)^4
\]

This is the basis for the Verlet algorithm. Note that the velocity does not appear in (3) and that the truncation error is of order \((\delta t)^4\) even though only 2\(^{nd}\) order derivatives need to be calculated. To arrive at the final equations, drop the error term and write

\[
x = x(t_k), \quad x_{\text{old}} = x(t_k - \delta t), \quad x_{\text{new}} = x(t_k + \delta t), \quad v_x = v_x(t_k), \quad a_x = a_x(t_k).
\]
Verlet algorithm

1. call a function to calculate the acceleration $a_x = f_x/m$, where f_x is the x-component of the net force on the particle at time t_k
2. calculate the new position
 \[x_{\text{new}} = 2x - x_{\text{old}} + a_x \times (\delta t)^2 \]
3. calculate the (approximate) velocity
 \[v_x = \frac{x_{\text{new}} - x_{\text{old}}}{2\delta t} \]
4. reassign positions
 \[x_{\text{old}} = x \]
 \[x = x_{\text{new}} \]
Repeat from 1.

The Verlet algorithm is not “self starting”: it requires information about two time steps and the initial state gives information only about a single time step.

We use an Euler-Cromer algorithm to advance the system one time step from the initial state x_0, v_{x0}
1. call a function to calculate a_x for the initial state
2. calculate the new velocity
 \[v_x = v_{x0} + a_x \delta t \]
3. calculate the new position
 \[x = x_0 + v_x \delta t \]
4. reassign position variable
 \[x_{\text{old}} = x_0 \]

Note: in systems with “periodic boundary conditions” (typical for materials simulations) the positions have to be corrected after steps 3.

Initial conditions:

\[
\begin{align*}
X0 &= -0.2;
Y0 &= 0; \quad \% \text{initial position} \\
v0 &= 1.0; \quad \% \text{initial speed} \\
\phi0 &= \pi/4; \quad \% \text{initial velocity angle} \\
vx0 &= v0*cos(\phi0);
vy0 &= v0*sin(\phi0); \quad \% \text{initial velocity components}
\end{align*}
\]

Euler step:

\[
\begin{align*}
% \text{Starting from the initial conditions, forward the solution one step using} \\
% \text{the Euler method} \\
[ax,ay] &= \text{faccstadium}(x(1),y(1)); \quad \% \text{call faccstadium to calculate the acceleration} \\
vx(2) &= vx(1)+ax*delt; \quad \% \text{calculate the new (time-step 2) x-component of the velocity} \\
x(2) &= x(1)+vx0*delt; \quad \% \text{calculate the new (time-step 2) x-component of the position} \\
vy(2) &= vy(1)+ay*delt; \quad \% \text{calculate the new (time-step 2) y-component of the velocity} \\
y(2) &= y(1)+vy0*delt; \quad \% \text{calculate the new (time-step 2) y-component of the position}
\end{align*}
\]

Verlet algorithm:

\[
\begin{align*}
% \text{Simulation of the motion of the ball with the Verlet algorithm} \\
\text{for } k = 2: \text{Nt-1} \quad \% \text{loop over time steps} \\
% \text{Calculate the components of position and velocity at the next time step} \\
[ax,ay] &= \text{faccstadium}(x(k),y(k)); \quad \% \text{call faccstadium to calculate the acceleration} \\
x(k+1) &= 2*x(k)-x(k-1)+ax*delt*delt; \quad \% \text{advance the x-component of the position} \\
vx(k) &= (x(k+1)-x(k-1))/(2*delt); \quad \% \text{calculate the x-component of the velocity} \\
y(k+1) &= 2*y(k)-y(k-1)+ay*delt*delt; \quad \% \text{advance the y-component of the position} \\
vy(k) &= (y(k+1)-y(k-1))/(2*delt); \quad \% \text{calculate the y-component of the velocity} \\
\end{align*}
\]
(program contains evaluation of Poincare section here)

\[
\begin{align*}
vx(\text{Nt}) &= vx(\text{Nt}-1); \quad \% \text{assign the last values of the velocity components} \\
vx(\text{Nt}) &= vy(\text{Nt}-1);
\end{align*}
\]