sin 30° = cos 60° = \frac{1}{2} \quad sin 60° = cos 30° = \frac{\sqrt{3}}{2} \approx 0.87 \quad sin 45° = cos 45° = \frac{\sqrt{2}}{2} \approx 0.7

Questions 1-2. Consider a traveling sinusoidal wave, propagating with velocity 20 m/s and frequency 40 Hz.

1. What is the amplitude of the wave?
 - (a) 0.5 m
 - (b) 2 m
 - (c) 800 m
 - (d) cannot be answered

2. What is the wave-number of the wave?
 - (a) 2\pi m^{-1}
 - (b) 4\pi m^{-1}
 - (c) 8\pi m^{-1}
 - (d) cannot be answered

3. The velocity of a transverse wave on a stretched cord depends only on the tension in the cord.
 - (a) True
 - (b) False

Questions 4-5. Three charged particles are arranged as shown in the picture below. Their charges are \(q_1 = 1 \mu C, q_2 = -1 \mu C \) and \(q_3 = 2 \mu C \). Use \(k = 9 \times 10^9 \text{Nm}^2/\text{C}^2 \).

![Diagram of charged particles](image)

4. What is the electrostatic force on particle with charge \(q_2 \) due to charge \(q_3 \)?
 - (a) \(\frac{9}{5} \cdot 10^{-3} \text{N} \)
 - (b) \(\frac{1}{5} \cdot 10^{-3} \text{N} \)
 - (c) \(\frac{9}{5} \cdot 10^{-3} \text{N} \)
 - (d) \(9 \cdot 10^{-3} \text{N} \)

5. What is the *net* electrostatic force on particle with charge \(q_1 \)?
 - (a) \(\sqrt{325} \cdot 10^{-3} \text{N} \)
 - (b) \(\sqrt{81} \cdot 10^{-3} \text{N} \)
 - (c) \(\sqrt{325} \cdot 10^{-3} \text{N} \)
 - (d) \(\sqrt{3} \cdot 10^{-3} \text{N} \)
6. The law of conservation of electric charge states: “The net amount of electric charge produced in any physical process is zero.”

(a) True (b) False

Questions 7-8. Consider two charged objects q_1 and q_2 below.

7. Based on the electric field lines, charge q_1 is:

(a) positive (b) negative (c) cannot be answered

8. Based on the electric field lines, charge q_2 is:

(a) positive (b) negative (c) cannot be answered

Questions 9-10. Consider four objects with equal charges q, located at the corners of a square with side a, as shown below.

9. What is the magnitude of net electrostatic force on the object at the origin, due to the other three objects?

(a) $k \frac{q^2}{a^2}$ (b) $k \frac{q^2}{a^2} \left(\frac{1}{2} + \frac{1}{\sqrt{2}} \right)$ (c) $k \frac{q^2}{a^2} \left(\frac{1}{3} + \frac{1}{\sqrt{3}} \right)$ (d) $k \frac{q^2\sqrt{2}}{2a^2}$

10. The magnitude of electric field at the center of the square due to all four objects is:

(a) 0 (b) $k \frac{q}{2a^2}$ (c) $k \frac{q}{a^2} \left(\frac{1}{2} + \frac{1}{\sqrt{2}} \right)$ (d) $k \frac{q\sqrt{2}}{2a^2}$
11. The electric field is always _______________ to the surface outside a conductor.
 (a) parallel (b) perpendicular (c) cannot be answered

12. The combination of two equal charges of opposite sign, \(+Q \) and \(-Q \), separated by a distance \(l \), is referred to as:
 (a) electroscope (b) ion (c) electric dipole (d) insulator

Questions 13-14. A uniform electric field \(\vec{E} \) is parallel to the axis of a hollow hemisphere of radius \(r \), as in the figure below.

13. What is the electric flux through the hemispherical surface?
 (a) 0 (b) \(\frac{4}{3} \pi r^3 E \) (c) \(\pi r^2 E \) (d) \(\frac{2}{3} \pi r^2 E \)

14. What is the electric flux through the hemispherical surface if the field \(\vec{E} \) is instead perpendicular to the axis?
 (a) 0 (b) \(\frac{4}{3} \pi r^3 E \) (c) \(\pi r^2 E \) (d) \(\frac{2}{3} \pi r^2 E \)

Questions 15-16. Suppose an electron traveling with speed \(v_0 \) enters a uniform electric field \(\vec{E} \), which is at right angles to \(\vec{v}_0 \), as in the picture below. **Hint:** The mass of the electron is \(m \).

15. The \(x \) component of electron’s acceleration is:
 (a) \(a_x = 0 \) (b) \(a_x = -\frac{E}{v_0} \) (c) \(a_x = -\frac{em}{E} \) (d) \(a_x = -\frac{eE}{m} \)

16. The \(y \) component of electron’s acceleration is:
 (a) \(a_y = 0 \) (b) \(a_y = -\frac{E}{v_0} \) (c) \(a_y = -\frac{em}{E} \) (d) \(a_y = -\frac{eE}{m} \)
Questions 17-20. Consider a non-conducting sphere of radius r_0 which has a spherical cavity of radius r_1 centered at the sphere’s center, as in the picture below. Assume the charge Q is distributed uniformly in the “shell” (between r_1 and r_0).

17. What is the charge density ρ on the shell?

(a) $\frac{Q}{4\pi \varepsilon_0 r_0^2}$
(b) $\frac{3Q}{4\pi (r_0^3 - r_1^3)}$
(c) $\frac{3Q}{4\pi (r_0^3 - r_1^3)}$
(d) $\frac{3Q}{4\pi (r_0^3 - r_1^3)}$

18. The electric field in the region $0 < r < r_1$ is:

(a) 0
(b) $\frac{1}{4\pi \varepsilon_0} \frac{Q}{(r_0 - r_1)^2}$
(c) $\frac{1}{4\pi \varepsilon_0} \frac{Q}{(r - r_1)^2}$
(d) $\frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2}$

19. The electric field in the region $r_1 < r < r_0$ is:

(a) 0
(b) $\frac{Q}{4\pi \varepsilon_0 r^2} \frac{r^3 - r_1^3}{r_0^3 - r_1^3}$
(c) $\frac{Q}{4\pi \varepsilon_0 r^2} \frac{r^3 - r_0^3}{r_0^3 - r_1^3}$
(d) $\frac{3Q}{4\pi \varepsilon_0 r_0^2}$

20. The electric field in the region $r > r_0$ is:

(a) 0
(b) $\frac{1}{4\pi \varepsilon_0} \frac{Q}{(r_0 - r_1)^2}$
(c) $\frac{1}{4\pi \varepsilon_0} \frac{Q}{(r - r_1)^2}$
(d) $\frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2}$