\[
\begin{align*}
\sin 30^\circ &= \cos 60^\circ = \frac{1}{2} \\
\sin 60^\circ &= \cos 30^\circ = \frac{\sqrt{3}}{2} \approx 0.87 \\
\sin 45^\circ &= \cos 45^\circ = \frac{\sqrt{2}}{2}
\end{align*}
\]

1. The mechanical energy of a system is the sum of its kinetic, potential and thermal energy.

 (a) True
 (b) False
 (c) cannot be answered

2. Gravitational potential energy has the form:

 (a) \(-G \frac{Mm}{r}\)
 (b) \(g \frac{M}{r^2}\)
 (c) \(G \frac{M}{r^2}\)
 (d) none of these

3. The potential energy for the force of friction can be expressed as:

 (a) \(-\mu_k F_N d\)
 (b) \(\mu_k F_N d\)
 (c) \(-\mu_k mg d \cos \theta\)
 (d) none of these

Questions 4-5. A ball of mass \(m=1\) kg, starting from rest, falls a vertical distance \(h=5\) m before striking a vertical spring (spring constant \(k=2\) N/m) which it compresses an amount \(Y\). Take \(g \approx 10\) m/s\(^2\).

![Diagram of ball falling and compressing a spring]

4. The speed of the ball just before it strikes the spring is:

 (a) 1 m/s
 (b) 5 m/s
 (c) 10 m/s
 (d) 20 m/s

5. The ball compresses the spring the amount \(Y=\):

 (a) 5 m
 (b) \(5 \sqrt{3}\) m
 (c) \(5(1+\sqrt{3})\) m
 (d) \(\sqrt{3}/5\) m
Questions 6-7. A block of mass \(m = 1 \text{ kg} \) moves along a rough surface and strikes a horizontal spring, as shown in the picture. The coefficient of kinetic friction between the block and the surface is \(\mu_k = 0.1 \). The speed of the box just before the contact with the spring is 1 m/s. The spring compresses \(x = 10 \text{ cm} \) due to the impact. Take \(g \approx 10 \text{ m/s}^2 \).

6. What is the work done by the force of friction from the moment the block hits the spring until it comes to a full stop?

(a) -0.1 J (b) 0.1 J (c) -0.2 J (d) 0.2 J

7. What is the potential energy of the system when the block comes to a full stop?

(a) 0 (b) 0.4 J (c) 0.5 J (d) none of these

Questions 8-9. A small box of mass \(m = 1 \text{ kg} \) goes down a \(d = 10 \text{-m} \) long slide inclined \(\theta = 30^\circ \) with the horizontal, as in the picture. The coefficient of kinetic friction between the box and the slide is \(\mu_k = 0.1 \). Take \(g \approx 10 \text{ m/s}^2 \).

8. The work done by the force of friction is:

(a) -10 J (b) 10 J (c) -8.7 J (d) 8.7 J

9. If the box starts from rest at the top of the slide, how fast is it traveling when it reaches the bottom?

(a) 10 m/s (b) \(\sqrt{98.2} \text{ m/s} \) (c) \(\sqrt{82.6} \text{ m/s} \) (d) \(\sqrt{50} \text{ m/s} \)
Questions 10–11. The potential energy of the two atoms in a diatomic molecule (the so-called Lennard-Jones potential) can be written as:

\[U(r) = -\frac{a}{r^6} + \frac{b}{r^{12}} \]

where \(r \) is the distance between the two atoms and \(a \) and \(b \) are positive constants.

10. What is the corresponding force \(F(r) \)?

(a) \(-5a r^5 + 11b r^{11}\) (b) \(-6a r^7 + 12b r^{13}\) (c) \(6a r^7 - 12b r^{13}\) (d) none of these

11. The Lennard-Jones potential energy \(U(r) \) has one stable equilibrium point, which corresponds to the equilibrium distance between the atoms in the molecule. What is this equilibrium distance?

(a) \(\sqrt[3]{\frac{2b}{a}}\) (b) \(\sqrt[3]{\frac{2b}{a}}\) (c) \(\sqrt[3]{\frac{2a}{b}}\) (d) none of these

12. Newton’s second law can be expressed in terms of momentum as?

(a) \(\sum \vec{F} = m\vec{p}\) (b) \(\sum \vec{F} = \frac{d\vec{p}}{dt}\) (c) \(\sum \vec{F} = \frac{d\vec{p}}{dx}\) (d) \(\sum \vec{p} = \frac{d\vec{F}}{dx}\)

13. The law of conservation of momentum states that when the net external force on a system is zero, its total momentum remains constant.

(a) True (b) False (c) cannot be answered

14. The recoil velocity of a 5 kg rifle that shoots a 50 g bullet at a speed of 100 m/s is:

(a) 0.1 m/s (b) 1 m/s (c) 10 m/s (d) 100 m/s
Question 15 Consider the potential energy diagram below:

15. What are the unstable equilibrium points?

(a) B
(b) B and D
(c) A, C and E
(d) B, D and F

16. Three particles, each of mass $m=1$ kg, are located at the corners of an equilateral triangle whose sides have length $a=1$ m, as shown in the picture below.

The center of mass is located at (x, y)=:

(a) (0, 0.87)
(b) (0.5, 0.5)
(c) (0.5, 0.29)
(d) (0.5, 0.87)

Questions 17-18. A billiard ball of mass m moving with speed $v_1=1$ m/s collides head-on with a second ball of mass $2m$ which is at rest.

17. What is the velocity of the ball of mass m after the collision?

(a) -0.33 m/s
(b) -0.5 m/s
(c) -0.67 m/s
(d) -1 m/s

18. What is the velocity of the ball of mass $2m$ after the collision?

(a) 0.33 m/s
(b) 0.5 m/s
(c) 0.67 m/s
(d) 1 m/s
Questions 19-20. A ball of mass m traveling with speed $v_1=1 \text{ m/s}$ collides elastically with a ball of mass $2m$ which is at rest. After the collision the ball of mass m is observed to be scattered at a 60° angle, and the ball of mass $2m$ is observed to be scattered at a 30° angle, as in the picture:

19. What is the speed of the ball of mass m after the collision?

 (a) 0.25 m/s (b) 0.43 m/s (c) 0.5 m/s (d) 0.87 m/s

20. What is the speed of the ball of mass $2m$ after the collision?

 (a) 0.25 m/s (b) 0.43 m/s (c) 0.5 m/s (d) 0.87 m/s