\[
\sin 30^\circ = \cos 60^\circ = \frac{1}{2} \quad \sin 60^\circ = \cos 30^\circ = \frac{\sqrt{3}}{2} \approx 0.87 \quad \sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}
\]

1. An angle \(\beta=200^\circ\) expressed in radians is:

 (a) \(\frac{9\pi}{10}\) rad
 (b) \(\frac{3}{4\pi}\) rad
 (c) \(\frac{10\pi}{9}\) rad
 (d) \(\frac{9}{10\pi}\) rad

2. The instantaneous angular acceleration is defined as:

 (a)
 (b)
 (c)

 \[
 \omega = \frac{\Delta \theta}{\Delta t} \quad \alpha = \frac{d\omega}{dt} = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} \quad \omega = \frac{d\theta}{dt} = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t}
 \]

3. A hard drive rotates with 600 rpm (revolutions per minute). What is its angular velocity \(\omega\)?

 (a) 20 rad/s
 (b) \(20\pi\) rad/s
 (c) 60 rad/s
 (d) \(60\pi\) rad/s

Questions 4-5. An object, initially at rest, starts to rotate with constant angular acceleration \(\alpha=10\ \text{rad/s}^2\).

4. What is its angular velocity after 10 s?

 (a) 50 rad/s
 (b) 100 rad/s
 (c) \(50\pi\) rad/s
 (d) \(100\pi\) rad/s

5. How many revolutions does the object make in 10 s?

 (a) 250
 (b) 500
 (c) \(250/\pi\)
 (d) \(500/\pi\)

Questions 6-7. An object rotates with constant angular velocity \(10\ \text{rad/s}\).

6. What is the linear velocity of a point located 10 cm from the axis or rotation?

 (a) 0
 (b) 1 m/s
 (c) 10 m/s
 (d) \(2\pi\) m/s

7. What is radial acceleration of a point located 10 cm from the axis of rotation?

 (a) 0
 (b) 10 m/s\(^2\)
 (c) 20 m/s\(^2\)
 (d) \(10\pi\) m/s\(^2\)
Questions 8-9. Thin cylinder wheel of radius R=10 cm can rotate about an axis that passes through its center, as in the picture. The magnitudes of the two forces are $F_1=10$ N and $F_2=20$ N.

8. The magnitude of the net torque on the wheel due to these two forces is:

(a) 1 Nm (b) 1.13 Nm (c) 1.92 Nm (d) 2.05 Nm

9. Due to this net torque the wheel rotates:

(a) clockwise (b) counterclockwise (c) does not rotate

10. Angular momentum of a particle is defined as:

(a) $\vec{\ell} = \vec{p} \times \vec{\omega}$ (b) $\vec{\tau} = \vec{L} \cdot \vec{p}$ (c) $\vec{\ell} = \vec{r} \times \vec{p}$ (d) $I = mr^2$

11. Newton’s second law for rotations can be expressed as?

(a) $\sum \vec{L} = m\vec{\omega}$ (b) $\sum \vec{F} = \frac{d\vec{p}}{dt}$ (c) $\sum \vec{\tau} = \frac{d\vec{L}}{dt}$ (d) $\sum \vec{F} = \frac{d\vec{L}}{dx}$

12. The law of conservation of angular momentum states that the total angular momentum of a system remains constant if the net external torque acting on the system is zero.

(a) True (b) False (c) cannot be answered
Questions 13-14. Three particles, each of mass m, are located at the corners of an equilateral triangle whose sides have length a, as shown in the picture below.

13. The moment of inertia about x-axis is:
 (a) ma^2 (b) $\frac{3}{4}ma^2$ (c) $\frac{5}{4}ma^2$ (d) $3ma^2$

14. The moment of inertia about y-axis is:
 (a) ma^2 (b) $\frac{3}{4}ma^2$ (c) $\frac{5}{4}ma^2$ (d) $3ma^2$

15. Vectors A and B are given as $A=3i-4j-k$ and $B=-2i+j+2k$. Vector product $A \times B$ is:
 (a) $2i - 3j+7k$ (b) $3i+7j-4k$ (c) $-7i-4j-5k$ (d) none of these

16. A force $F=10N \, i$ acts at $r=1m \, i + 1m \, j$. What is the torque vector $\mathbf{\tau}$ due to this force?
 (a) $10i \, Nm$ (b) $-10k \, Nm$ (c) $5j \, Nm$ (d) $20k \, Nm$

Questions 17-18. A sphere of mass $M=1$ kg and radius $R=1$ m rotates with constant angular velocity $\omega=1$ rad/s about an axis through its center. The moment of inertia of the sphere is $I=\frac{2}{5}MR^2$.

17. The rotational kinetic energy of the sphere is:
 (a) 0.1 J (b) 0.2 J (c) 0.5 J (d) 1 J

18. The radius of the sphere suddenly doubles, but its mass stays the same. What is the new angular velocity of rotation?
 (a) 0.25 rad/s (b) 0.5 rad/s (c) 1 rad/s (d) 1.25 rad/s
Questions 19-20. A solid cylinder of mass M and radius R_0 rolls down an incline as shown in the picture. The moment of inertia of the cylinder is $I = \frac{1}{2}MR_0^2$.

19. What will be the speed of the cylinder at the bottom of the incline if it starts from rest at a vertical height H?

(a) $\sqrt{2gH}$ (b) $\frac{4}{\sqrt{3}}gH$ (c) $\frac{10}{\sqrt{7}}gH$ (d) \sqrt{gH}

20. How many times is the translational kinetic energy of the cylinder at the bottom of the incline greater than its rotational kinetic energy?

(a) 1.5 (b) 2 (c) 2.5 (d) 3